Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces
نویسندگان
چکیده
Let L be a Schrödinger operator of the form = − Δ + V acting on 2 ( R n ) where nonnegative potential belongs to reverse Hölder class B q for some ≥ . BMO denote space associated L. In this article we will show that function f ∈ is trace solution u : t 0 , x satisfies Carleson-type condition sup r ∫ | ∂ ∇ d ≤ C < ∞ Conversely, characterizes all L-carolic functions whose traces belong
منابع مشابه
Bmo Spaces Associated with Semigroups of Operators
We study BMO spaces associated with semigroup of operators on noncommutative function spaces (i.e. von Neumann algebras) and apply the results to boundedness of Fourier multipliers on non-abelian discrete groups. We prove an interpolation theorem for BMO spaces and prove the boundedness of a class of Fourier multipliers on noncommutative Lp spaces for all 1 < p < ∞, with optimal constants in p....
متن کاملHardy and BMO spaces associated to divergence form elliptic operators
Consider a second order divergence form elliptic operator L with complex bounded coefficients. In general, operators related to it (such as the Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we develop a theory of Hardy and BMO spaces associated to L, which includ...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولCorrection to “hardy and Bmo Spaces Associated to Divergence Form Elliptic Operators”
We present here a correction to an error in our paper [3]. We are grateful to Dachun Yang for bringing the error to our attention. In [3] we develop a theory of H1 (Hardy type) and BMO spaces adapted to a second order, divergence form elliptic (aka accretive) operator L in Rn, with complex, L∞ coefficents. In particular we establish the equivalence of several different H1 type spaces, based on ...
متن کاملN ov 2 00 6 Hardy and BMO spaces associated to divergence form elliptic operators
Consider the second order divergence form elliptic operator L with complex bounded coefficients. In general, the operators related to it (such as Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we generalize the classical approach and develop a theory of Hardy and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2021
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.201900213